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Abstract
We study the effect of initial ‘shrinking’ of radial ‘ring-shaped’ wave packets
with zero initial velocity distribution in two and more dimensions. Considering
time evolution of probability densities described by explicit exact solutions of
the free Schrödinger equation in d dimensions, we introduce and compare two
different families of quantitative measures of ‘expansion’. The measures of
the first type are based on the mean values of arbitrary powers of radius, they
characterize the ‘total extension’ of the packet. The measures of the second
type quantify the ‘internal’ size of the packet (or an effective width of the
‘ring’). We find that the effect of initial ‘in-spreading’, which is very small
in two dimensions and absent in higher dimensions with respect to the mean
value of radius, is much more pronounced, if one uses mean values of 〈rα〉
with α < 1 and especially α < 0 as the measure of packet extension. In this
sense, the case of two dimensions is not distinguished, and shrinking packets
exist in more than two dimensions, as well. On the other hand, we show that
the effect of initial ‘shrinking’ or ‘expansion’ strongly depends on the chosen
measure of spatial extension (‘total’ or ‘internal’) of the packet. Moreover, the
conclusions concerning the initial evolution of the ‘internal’ packet extensions
based on the ‘volume’ probability density |ψ|2 may be sometimes opposite to
the conclusions based on the ‘radial probability density’ rd−1|ψ|2.

PACS numbers: 03.75.−b, 03.65.−w

1. Introduction

Recently, renewed interest in propagation, reflection, scattering and diffraction of packets of
matter waves in one and several dimensions has been observed [1–8]. In particular, it was
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shown in [6] that for ‘ring-shaped’ packets in d space dimensions, whose initial form depends
only on radius as (we use dimensionless variables, assuming m = h̄ = 1)

ψd(r; 0) = N dr
2 exp(−r2) (1)

the mean value of the radius decreases with time in some interval 0 < t < t∗ for d = 2,
whereas for d � 3 it monotonically increases for all t > 0. This effect of initial contraction of
the packet was interpreted as a manifestation of an effective ‘quantum anticentrifugal potential’
in two dimensions [9] (for other studies of different ‘effective’ or ‘fictitious’ quantum forces
see [1, 3, 8, 10]). However, the effect of contraction considered in [6] seems to be extremely
small, because the ratio of the minimal mean radius to its initial value equals 0.9978 for the
initial packet (1) and 0.9953 for the best configuration among those considered in [6]. From
a common point of view, such values are usually considered as practically undistinguishable
from unity.

But the mean radius is only one of many reasonable quantitative measures of the packet
extension. The aim of our paper is to show that the effect of initial ‘shrinking’ of the
packet can be made much more pronounced if one uses other measures, in particular, the
mean values of different (especially negative) powers of the radius, or some ‘entropy-like’
extensions. However, in terms of these generalized measures, the two-dimensional case loses
its distinguished role (although it is distinguished in some other respects). Moreover, under
certain conditions, three- and higher-dimensional packets may exhibit stronger initial shrinking
than two-dimensional ones.

The plan of the paper is as follows. In section 2, we obtain explicit analytical expressions
describing the evolution of ‘scale-invariant’ initial ring-shaped packets generalizing (1) for
an arbitrary number of space dimensions d, giving also some graphical illustrations for the
distribution of the probability density and phase velocity. Although the cases of d = 2 and
d = 3 seem to be the most relevant, studying the general case provides some additional
information which helps to understand the situation better. Besides, the cases of d > 3 could
be interesting from the point of view of analysis of the behaviour of many-particle systems
[6, 10]. In section 3 we analyse the mean values of arbitrary powers of the radius as
measures of packet size. The ‘entropy-like’ measures of packet extension are considered in
section 4. Section 5 contains a discussion of results and conclusions.

2. Spreading of scale-invariant ring-shaped packets

Integrating the well-known propagator of the free Schrödinger equation in d space dimensions

G(x, x′, t) = (2π it)−d/2 exp
[ i

2t
(x − x′)2

]
(2)

over angular variables, one can easily find, using the known integral representations of the
Bessel functions (see, e.g., formula 7.12.9 from [11]), that the evolution of initial wavefunctions
depending only on the radius r ≡ (x2)1/2 is given by effective radial propagators of the form
(see also, e.g., [12])

ψd(r, t) = r

t

∫ ∞

0

(
r ′

ir

)d/2

J(d−2)/2

(
rr ′

t

)
exp

[ i

2t
(r2 + r ′2)

]
ψd(r

′, 0) dr ′ (3)

where Jν(z) is the Bessel function and d is the number of space dimensions.
We consider the following generalization of the initial packet (1):

ψ
(k)

d (r; 0) = Nd,kr
k exp(−r2) N 2

d,k = 2k+d/2�(d/2)

πd/2�(k + d/2)
(4)
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where �(z) is Euler’s gamma function. Then the integral (3) can be expressed in terms of the
confluent hypergeometric function �(a; c; z) (see, e.g., equation 7.7.3(22) from [11]), so that

ψ
(k)
d (r; t) = Nd,k�

(
k+d

2

)
(iτ )k/2

�(d/2)(1 + iτ )
k+d

2

exp

(
− r2

1 + iτ

)
�

(
−k

2
; d

2
; ir2

τ (1 + iτ )

)
(5)

where τ ≡ 2t . If k/2 = n is an integer, then the right-hand side of (5) can be expressed in
terms of the associated Laguerre polynomials due to formula 10.12(14) from [11]:

ψ
(2n)

d (r; τ ) = Nd,2nn!(iτ )n

(1 + iτ )n+d/2
exp

(
− r2

1 + iτ

)
L(d/2−1)

n

(
ir2

τ (1 + iτ )

)
. (6)

It is not difficult to generalize the solutions (5) or (6) to the case where the argument of the
exponential in (4) is equal to −(1 + iκ)r2. Such functions can be considered as generalizations
of correlated coherent states of [13] or their special case—‘contractive states’ of [14], because
the covariances 〈x̂p̂ + p̂x̂〉 are different from zero in these states. However, if κ �= 0, then the
initial mean value of the radial momentum is also different from zero, so the effect of shrinking
of the initial packet becomes trivial. For this reason we confine ourselves to the case of κ = 0.

2.1. Probability distribution

It is easy to see from equations (5) or (6) that for large τ (and fixed r) the packet ‘forgets’ its
initial ring shape and spreads as the usual Gaussian packet:∣∣ψ(k)

d (r; τ )
∣∣2 ∼ τ−d exp(−2r2/τ 2) τ 	 1.

However, since the initial ‘ring-shaped’ packet spreads both outside and inside, its shape may
be quite different from the Gaussian and from the initial one at the initial stage of evolution
(when τ < 1) due to the interference effects. For example, using formula (6) with n = 1 one
obtains the solutions of the Schrödinger equation corresponding to the initial function (1):

ψ
(2)
d (r; τ ) = Nd,2(1 + iτ )−2−d/2(r2 − τ 2d/2 + iτd/2) exp

(
− r2

1 + iτ

)
. (7)

It has the probability density

ρd(r; τ ) ≡ ∣∣ψ(2)

d

∣∣2 = N 2
d,2

r4 − r2τ 2d + τ 2(1 + τ 2)d2/4

(1 + τ 2)2+d/2
exp

(
− 2r2

1 + τ 2

)
. (8)

This function has one minimum and one maximum in the interval 0 < r < ∞ (and one
maximum at r = 0 for τ > 0). For τ 	 1 their positions are given by the approximate
expressions rmin ≈ τ

√
d/2 and rmax ≈ τ

√
1 + d/2 (for d = 2 this is an exact formula), and

the following approximate ratios hold:
ρmax

ρ(r = 0)
≈ (ed/2)−2 e−d ρmin

ρmax
≈ (edτ/2)−2.

Consequently, some remnants of the initial ring survive for τ 	 1, but this outer ring is very
faint: its height is about 2% of the height of the central peak for d = 2 and less than 0.5% for
d = 3.

The initial stages of evolution of the ‘volume probability density’ ρd(r; τ ) and the ‘radial
probability density’

χd(r; τ ) = ωdr
d−1|ψd(r; τ )|2 ωd ≡ 2πd/2

�(d/2)
(9)

for different values of k and d are demonstrated in figures 1–6.
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Figure 1. The volume probability density ρ(r) = |ψ(r)|2 for k = 2 and d = 2 at different
moments of time. I: τ = 0, II: τ = 0.25, III: τ = 1/

√
7 ≈ 0.38, IV: τ = 1, V: τ = 2.
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Figure 2. The radial probability density χ(r) (9) for k = 2 and d = 2 at different moments of
time. I: τ = 0, II: τ = 1/

√
7 ≈ 0.38, III: τ = 1, IV: τ = 2.

Looking at the plots, we discover, first of all, that the visual impression depends on the
kind of probability density considered. The radial probability distributions at τ > 0 seem to
always be wider than the initial ones, although it is not obvious whether their spreading is
always monotonic or not (compare the curves III and IV in figure 2 and the curves II and III
in figure 4).

The situation becomes even more complicated, if one looks at the evolution of the volume
probability densities. For example, in the case of k = d = 2 (figure 1) the distributions of
ρ(r) at the moments τ = 1/

√
7 (curve III) and τ = 2 (curve V) seem to be obviously wider

than at τ = 0. However, it is not easy to answer whether the packet at the moment τ = 1
(curve IV) is wider or narrower than the initial one, especially if one closes ones eyes to the
‘tail’ of the packet at r > 1. The same can be said about the volume distributions at the
moments τ = 0.25 (curve II), τ = 2 (curve IV) and τ = √

2/3 (curve III) in the case of k = 2
and d = 3 (figure 3). And which curve is relatively narrower or wider with respect to the
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Figure 3. The volume probability density ρ(r) = |ψ(r)|2 for k = 2 and d = 3 at different
moments of time. I: τ = 0, II: τ = 0.25, III: τ = √

2/3 ≈ 0.82, IV: τ = 2.
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Figure 4. The radial probability density χ(r) (9) for k = 2 and d = 3 at different moments of
time. I: τ = 0, II: τ = √

2/3 ≈ 0.82, III: τ = 2.

initial distribution: curve III in figure 1 (which corresponds to the smallest size of the packet
according to results of [6]: see the next section) or curve III in figure 3? (According to the
measure of extension adopted in [6], curve III describes the distribution whose size is greater
than that corresponding to curve II in the same figure 3, although visually the distribution III
is apparently narrower than the distribution II.) Analogously, in the case of k = 20 and d = 2
(figure 5) the distribution given by curve II seems to be obviously wider than the initial one,
but what can be said about the distribution given by curve III ?

2.2. Velocity distribution

Additional useful information concerning the dynamics of the shrinking/expansion process is
contained in the velocity distribution in the packet. Remembering that the probability density
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Figure 5. The volume probability density ρ(r) = |ψ(r)|2 for k = 20 and d = 2 at different
moments of time. I: τ = 0, II: τ = 1.4, III: τ = √

10 ≈ 3.16.
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Figure 6. The radial probability density χ(r) (9) for k = 20 and d = 2 at different moments of
time. I: τ = 0, II: τ = 1.4, III: τ = 10.

flux is defined as J = Im(ψ∗∇ψ) (we assume h̄ = m = 1), the local (phase) velocity is
given by

v = J/ρ = Im(∇ψ/ψ). (10)

For the radial packets vector v has only a radial component. For the state (7) we obtain

v(r, τ ) = 2rτ [r4 − r2τ 2d + d(1 + τ 2)(τ 2d − 2)/4]

(1 + τ 2)[(r2 − τ 2d/2)2 + τ 2d2/4]
. (11)

(Although the velocity grows as r for r → ∞, this has no physical consequences, because the
probability flux is suppressed by the exponentially decaying probability density ρ(r).) The
regions of shrinking correspond to negative values of v(r). Their bounds are given by two
roots of the quadratic (with respect to r2) expression in the numerator of (11):

r2
±(τ ) = d

2
τ 2 ±

√
d

2

[
1 − τ 2

(
d

2
− 1

)]
. (12)
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0 1 2
0

1

2

3

d = 3

d = 3 d = 2

d = 2

r

τ

Figure 7. The regions of shrinking, corresponding to negative phase velocity (11), are located
between two dashed curves for d = 2 and between two solid curves for d = 3 (for the initial
packet with k = 2).

For τ <
√

2/d (this is exactly the moment when the probability density at the origin |ψ(0, τ )|2
attains its maximum) some local shrinking seems to exist for 0 < r < r+(τ ). After that, the
region near the origin begins to expand, and the shrinking region is limited by two values:
r−(τ ) < r < r+(τ ). Here we observe a qualitative difference between the cases of d = 2
and d � 3. In three and more dimensions the intermediate shrinking region exists only
for τ <

√
2/(d − 2), whereas in the case of two dimensions the shrinking region never

disappears, although its size diminishes as soon as it moves outside; it is confined in the
interval

√
τ 2 − 1 < r <

√
τ 2 + 1. These ‘regions of shrinking’ for d = 2 and d = 3 are

shown in figure 7.
However, to answer the question, whether the packet shrinks or expands as a whole, we

need quantitative measures of packet extension.

3. Generalized mean radius as a measure of extension

One of the most frequently used quantities characterizing the ‘size’ of some distribution
possessing the probability density ρ(x) is the mean square radius

R(2) ≡
(∫

x2|ψ(x)|2 dx
)1/2

. (13)

However, this quantity is totally insensitive to the form of freely expanding packet,
because for any initial distribution without correlations between coordinates and momentum
(〈x̂p̂ + p̂x̂〉 = 0) the exact solution of the Heisenberg equations of motion for a free particle
results in the monotonic time dependence

[R(2)(t)]2 = [R(2)(0)]2 + 〈p̂2〉t2/m2

(we calculate all mean values in the reference frame related to the ‘centre of mass’ of the
packet, where 〈x̂〉 = 〈p̂〉 = 0).

Therefore, we have two possibilities. The first one is to assume that the mean square radius
is the only ‘true’ measure of the packet extension, concluding immediately that ‘shrinking’
(free) packets do not exist and figures 1–6 are something like ‘optical illusions’. The second
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possibility is to admit that there exist other measures of packet extension, which are not
worse than (13), moreover, which could provide additional information on the properties of
quantum systems. Making the second choice, we can try to find such measures which would
be more sensitive to the details of packet evolution. The reason why the measure (13) ‘does
not feel’ the form of the packet seems to be clear: the initial ring-shaped packet expands in
both directions, outside and inside, but the factor x2 in the integrand of (13) (together with
the factor rd−1 in the radial probability density) gives much more preference to the outer parts
of the packet, so that its ‘internal behaviour’ becomes totally irrelevant. Thus the way to
resolve the problem becomes also almost obvious: one should use such measures which
would treat the ‘external’ and ‘internal’ parts of the packet on a ‘more equal’ footing.

The simplest possibility is to diminish the power of the factor |x| in (13) and to characterize
the extension of the packet by the mean radius

〈r〉d =
∫ ∞

0
drrχd(r). (14)

Namely this measure was used in [6]. Calculating the integral (14) for the function (8) with
the aid of the relation∫ ∞

0
rn e−2r2/a dr = 1

2

(a

2

) n+1
2

�

(
n + 1

2

)
(15)

and the known property of the Gamma function �(z + 1) = z�(z), we obtain the formula
(given in [6] without derivation)

〈r(τ )〉d = 〈r(0)〉d 1 + bτ 2

√
1 + τ 2

b = d2 + 3

(d + 3)(d + 1)
. (16)

In particular, for d = 2 and d = 3 one has [6]

〈r(τ )〉2/〈r(0)〉2 = 1 + 7τ 2/15√
1 + τ 2

〈r(τ )〉3/〈r(0)〉3 = 1 + τ 2/2√
1 + τ 2

. (17)

The character of initial evolution of the mean radius is determined by the parameter

b − 1/2 = (d − 3)(d − 1)

2(d + 3)(d + 1)

(which is equal to the coefficient at the first nonzero term τ 2 in the Taylor expansion of
〈r(τ )〉/〈r(0)〉). This parameter is negative only for d = 2. On this ground, the authors of [6]
concluded that the initial ‘in-spreading’ of radial packets is possible only in the case of two
space dimensions. However, for τ � 1 the actual difference between two functions in (17) is
very small:

〈r(τ )〉2

〈r(0)〉2
= 1 − τ 2

30
+

17

120
τ 4 + · · · 〈r(τ )〉3

〈r(0)〉3
= 1 +

τ 4

8
+ · · · .

The function 〈r(τ )〉2/〈r(0)〉2 attains a minimum for τ∗ = 1/
√

7 (this value explains the choice
of parameters in figures 1 and 2), but the minimal value 〈r(τ∗)〉2/〈r(0)〉2 = √

224/225 is
very close to unity and to the value 〈r(τ∗)〉3/〈r(0)〉3 = 1 + 1/392. Therefore, it seems quite
probable that even small variations in the definition of the measure of extension could change
the situation.

On the other hand, as soon as one agrees that the measure (13) is not the only possible
one, there are no grounds to believe that there are only two ‘true’ measures, (13) and (14).
Moreover, the characterization of the dimension of the packet by its mean radius (14), i.e.,
by the average value of the first power of |x|, being quite natural at first sight, has no visible
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advantages over the measures based on other powers of |x|, say, |x|1/2, even from the point
of view of simplicity of calculations. Indeed, in contrast to the mean square radius, which
can be easily calculated by solving a simple closed set of (Ehrenfest) equations, there are
no closed equations for the function 〈r(τ )〉. In order to find it, one has to solve first the
Schrödinger equation, find the time-dependent wavefunction and calculate the integral (14).
For example, to obtain the result (17) one should calculate three integrals of the type (15) with
n = d + 2s and s = 0, 1, 2. However, the analytical form remains the same for arbitrary (not
necessarily integral) values of the exponent n. Therefore, it seems reasonable to suppose that
the measures (13) and (14) are nothing but special cases of a wide family of ‘generalized mean
radii’, characterized by a real continuous parameter α:

R
(α)
d =

[∫ ∞

0
drrαχd(r)

]1/α

. (18)

In the case of the probability density (8) (i.e., for k = 2) the calculations of the R
(α)
d -

extensions are reduced again to the integral (15), with the only difference that in the general
case n = d − 1 + α + 2s. Thus we obtain the following expression for the normalized function
R̃

(α)
d (τ ) = R

(α)
d (τ )

/
R

(α)
d (0):

R̃
(α)
d (τ ) = (1 + τ 2)1/2−1/α

[
1 +

(α − d)2 + 2(α + d)

(α + d)2 + 2(α + d)
τ 2

]1/α

. (19)

At τ � 1 it equals

R̃
(α)
d (τ ) = 1 +

(α + d)2 + 2α − 6d

2(α + d)(α + d + 2)
τ 2 + · · · . (20)

For α = 1 formulae (19) and (20) give the same results as equations (16) and (17).
It is worth noting that the ‘generalized extensions’ of quantum packets based on the

mean values of arbitrary powers of coordinates (radius) have been used for rather long time,
beginning, perhaps, with Bargmann’s work on generalized uncertainty relations [15] and its
further generalizations [16–18] (actually, ‘uncertainty relations’ tell us about limitations on
the extensions of quantum packets in complementary spaces, and the simplest inequalities
of the Weyl–Heisenberg or Schrödinger–Robertson type, based on the mean squared values,
constitute only a very small part of a large family of known relations, based on other definitions
of ‘extensions’ [19]).

The coefficient at τ 2 in (20) is negative for α < αc, where the critical exponent αc equals

αc =
√

1 + 8d − d − 1. (21)

For d = 2, αc = √
17 − 3 ≈ 1.12. It is remarkable that for d = 3, αc = 1, therefore, the

generalized effective radius of the initial packet (1) diminishes even in the three-dimensional
case for any α < 1. The minimal value of the function R̃

(α)
d (τ ) (19) with fixed parameters d

and α equals

R̃
(α)

d min =
√

8d(1 − α/2)1/2−1/α

[(α − d)2 + 2(α + d)]1/2−1/α[(α + d)2 + 2(α + d)]1/α
. (22)

It is attained for

τ 2
∗ = 6d − 2α − (α + d)2

(α − d)2 + 2(α + d)
. (23)
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The numerical values for some special cases are as follows:

α 0.9 0.75 0.5 0.25 0 −0.5 −1

R̃
(α)
2 min 0.9929 0.9808 0.9499 0.9080 0.8576 0.7401 0.6042

R̃
(α)
3 min 0.9989 0.9948 0.9816 0.9617 0.9368 0.8763 0.8046

The case of α = 0 is understood in the sense of the limit α → 0 in equations (19)
and (22):

R̃
(0)

d (τ ) =
√

1 + τ 2 exp

[
− 4τ 2

(1 + τ 2)(d + 2)

]

R̃
(0)

d min =
√

8

2 + d
exp

[
− 6 − d

2(2 + d)

]
R̃

(0)

2 min =
√

2/e.

Diminishing the value of exponent α one can make the minima of R̃
(α)
d (τ ) quite

pronounced, especially for α negative. In our opinion, there are no reasons to exclude
negative values of α, provided α > −d to ensure the convergence of integrals. For instance,
the value R

(−1)
d could be called the ‘Coulomb radius’ of the packet, as soon as it characterizes

the electrostatic potential energy in the given state of, e.g., a hydrogen atom. Note that
namely the uncertainty relation including the average value of 〈r−1〉 (and not of 〈r2〉 or 〈r〉) is
necessary in order to prove rigorously the existence of finite minimal energy of the hydrogen
atom, as was shown by Lieb [20] (see also [18, 19]). Moreover, it is well known that the
mean value of radius in the ground state of the hydrogen atom equals 3

2aB (where aB is

Bohr’s radius). At the same time, R(−1) equals exactly aB in this case. The value R
(−2)

d (for
d � 3) characterizes an effective size of the packet with respect to the centrifugal potential,
and uncertainty relations including this quantity have also been studied [15, 16, 18]. Note also
that the critical exponent αc (21) turns into zero for d = 6 and becomes negative for d < 6.

On the other hand, taking α close to −d one can obtain the value R̃
(α)
d min as close to zero

as desired. Of course, this does not mean that the effect of shrinking is only a matter of
convention. For example, in the case of symmetrical Gaussian packets (k = 0) one obtains
R̃

(α)
d,0(τ ) =

√
1 + τ 2 for any values of d and α > −d , so that no measure can make truly

expanding packets shrink. But a proper choice of the measure helps to visualize or emphasize
the effect when it does exist. For α → −d the time τ∗ (23) (when the value R̃

(α)
d min is achieved)

tends to
√

2/d, and this is exactly the moment when the function
∣∣ψ(2)

d (0; τ )
∣∣2

(the probability
density (8) at the origin) attains its maximum. Obviously, the measures with α close to −d are
too sensitive to the behaviour of the wavefunction near the origin, and they practically do not
take into account the form of the packet far from the origin (the opposite situation is observed
for the mean square radius: it is sensitive to the behaviour of the ‘tail’ of the packet, but it
practically does not feel what happens inside). Therefore, it seems reasonable to use negative
values of α which are greater than, say, 1 − d or perhaps, even −1.

3.1. Mean radius of packets with k arbitrary

One can make some conclusions concerning the initial evolution of the mean radius 〈r(t)〉
for an arbitrary (radial) packet, calculating the time derivatives of the right-hand side of
equation (14) at the initial moment t = 0 with the aid of the Schrödinger equation

∂ψ/∂t = i

2
ψ = i

2
r1−d ∂

∂r

(
rd−1 ∂

∂r
ψ(r)

)
. (24)
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Evidently, the first derivative d〈r〉/dt equals zero at t = 0 for the packet (4). Using
equation (24) twice, we obtain after some algebra the following formula:

R̃
(1)

d,k(τ ) = 1 +
(d − 3)(d − 1)τ 2

2(2k + d − 3)(2k + d − 1)
+ O(τ 4). (25)

The coefficient at τ 2 is negative for d = 2 and k > 1/2, and its absolute value decreases with
increasing k. Therefore, one could suppose that the packets of the form (4) with 1/2 < k < 2
exhibit stronger initial shrinking than the packet (1). However, numerical calculations show
a very small difference in the fifth digit only. For example, for k = 1.5 we have obtained
the minimal value of R̃

(1)

2,1.5(τ ) to be equal to 0.997 74, whereas the minimal value of R̃
(1)
2,2(τ )

equals 0.997 78, but we are not sure that this small difference is not a result of numerical
errors.

The coefficient at τ 2 in (25) is also negative for d > 3, if one of the two terms in the
denominator is negative while the other is positive, for example, for d = 6 and k = −2
(although ψ(r) diverges at r = 0 in this case, there is no divergence in the radial probability
density χ(r)). However, this case should be excluded, because formula (25) has sense only
for 2k + d − 3 > 0, otherwise some integrals arising in the course of its derivation become
divergent. Actually, in the case of d = 6 and k = −2 the mean radius can be calculated
analytically, because the confluent hypergeometric function is reduced to an elementary
function [21]:

�(1; 3; z) = 2z−2(ez − 1 − z).

We find

R̃
(1)

6,−2(τ ) = (1 + τ 2)−1/2
[
1 − 5τ 2 + 6τ 3/2

(
τ +

√
1 + τ 2

)1/2
]
.

Thus the expansion of R̃
(1)
6,−2(τ ) begins not with the negative term proportional to τ 2, but with

the positive term proportional to τ 3/2, and the second derivative with respect to time simply
does not exist at τ = 0.

4. ‘Entropy-like’ measures of packet extensions

An obvious disadvantage of the generalized mean radii is that these measures possess some
selectivity with respect to different parts of the packets. Namely, the values of R

(α)

d with
negative exponent α are more sensitive to the details of the probability density near the origin,
whereas the mean radii with α > 0 are more sensitive to the behaviour of the probability
density ‘tail’ for large values of r. Different measures of spatial (temporal) extensions of
wave packets (signals), which do not give preference to large or small values of coordinates,
were introduced by several authors [22–24] (for review see [19]). For example, a family of
‘intrinsic volumes’ of a quantum system described by the normalized probability distribution
ρ(x) = |ψ(x)|2 (where x is the d-dimensional position vector) can be defined, following
[22], as

V (β) =
(∫

[ρ(x)]β dx
)1/(1−β)

. (26)

Such quantities were also considered, e.g., in deriving some inequalities characterizing bound
states of quantum systems [18, 20]. In the case of a uniform distribution ρ(x) = V −1 in some
space region (not necessarily single-connected) of the volume V , the definition (26) results
in V (β) ≡ V for any β. Of course, the transition from the effective volume to the effective
length is not unique, because it depends on the shape of the distribution. However, it seems
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reasonable simply to extract the root of the dth power from (26). So we define the ‘total
β-extension’ of the symmetrical probability distribution ρ(r) in d dimensions as

E (β)

d =
(∫ ∞

0
ωdr

d−1[ρ(r)]β dr

)1/d(1−β)

(27)

where the area of the sphere of unit radius in the d-dimensional space ωd was defined in
equation (9). Roughly speaking, in the case of the ‘ring-shaped’ packets the ‘β-measures’
characterize the effective width of the ring, whereas the ‘α-measures’ characterize in some
way the effective radius of this ring (for α > 0).

Taking the limit β → 1 in (26), one arrives at the ‘entropic internal volume’

V (1) ≡ exp(Sx) Sx = −
∫

ρ(x) ln[ρ(x)] dx

introduced in [23] (see also [25]; there is a vast literature on the ‘entropic uncertainty relations’
formulated in terms of the ‘entropies’ such as Sx: see, e.g., [26, 27] and reviews [19, 28]).
However, we prefer to consider the special case of (27) with β = 2, due to the simplicity of
the calculations:

E (2)
d =

(∫ ∞

0
ωdr

d−1[ρ(r)]2 dr

)−1/d

. (28)

For the distribution (8) we find

Ẽ (2)

d =
[

(1 + τ 2)(d/2+2)

1 + bτ 2 + aτ 4

]1/d

(29)

where

Ẽ (β)

d (τ ) ≡ E (β)

d (τ )
/
E (β)

d (0) (30)

and

a = 81d2 − 54d + 24

d2 + 10d + 24
b = 18d2 − 44d + 48

d2 + 10d + 24
.

The Taylor expansion of (29) for small τ yields

Ẽ (2)
d = 1 +

d2 − 22d + 152

2(d + 6)(d + 4)
τ 2 + · · · .

One can check that the coefficient at τ 2 is always positive. Consequently, the function Ẽ (2)(τ )

increases initially for any number of space dimensions. However, it has local minima for
d � 12: see figure 8, which shows that the case of d = 4 is the best from the point of view of
the E (2)-measure.

Another simple expression for the extension arises in the case of β = ∞, because one
can verify that [22]

E (∞)
d ≡ (max[ρ(x)])−1/d. (31)

The usefulness of this form of extension was shown in the context of other problems (the
degree of coherence of partially coherent optical beams and generalizations of uncertainty
relations) in [29, 30]. Following [30] we shall call E (∞) ‘superextension’. For the distribution
ρ(r) given by equation (8) the dependence Ẽ (∞)

d (τ ) can be found analytically. Indeed, one can
easily verify that for τ > 0 the function ρ(r) has one maximum at r = 0 and another at r > 1
(it does not exist for all values of τ ). The position of the right maximum can be found by
solving a quadratic equation. Therefore, to find Ẽ (∞)

d (τ ), one should compare two functions:

f0(τ ) = (τde/2)−2/d(1 + τ 2)(2+d)/2d (32)
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Figure 8. The time dependence of the ‘volume’ extension E (2)
d for k = 2 and different space

dimensions: d = 2, 3, 4, 10.
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Figure 9. The time dependence of the ‘volume’ extension E (∞)
d for k = 2 and different space

dimensions: d = 2, 3, 4, 10.

and

f1(τ ) = 21/d
√

1+τ 2

(1+R)1/d
exp

[
τ 2

1+τ 2
− 1−R

d

]
R =

[
1 − τ 2d2

(1+τ 2)2

]1/2

(33)

choosing that one which gives the lower value. For small values of τ , one should use the
function (33) (see figures 1 and 3), whereas for larger values of time the function Ẽ (∞)

d (τ ) is
given by formula (32) (see figure 9). Expanding the function f1(τ ) in power series of τ we
obtain

Ẽ (∞)
d (τ ) ≈ 1 +

6 − d

4
τ 2 + · · · τ � 1.

Consequently, the ring-shaped packets (1) initially increase their superextension E (∞)
d in the

low-dimensional spaces with d < 6, whereas they shrink from the beginning (with respect to
this measure of extension) if d > 6 (note that the dimension d = 6 is distinguished also from
the point of view of the critical exponent αc (21), which becomes negative if d > 6). However,
even for d � 6 the initial expansion is changed by shrinking after some short interval of time
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(for large d the switch from f1 to f0 happens at τc ≈ 2/(ed), and this relation gives a good
approximation even for d = 2). The minimum of the function f0(τ ) is achieved at τ 2 = 2/d;
thus the minimal value of Ẽ (∞)

d equals

Ẽ (∞)
min (d) = (de2/2)−1/d(1 + 2/d)(2+d)/2d. (34)

It is less than 1 for any d � 2. In particular, Ẽ (∞)
min (2) = 2/e. Moreover, the table below

shows that three-dimensional packets exhibit more strong shrinking than two-dimensional
ones, according to the E (∞)-measure:

d 2 3 4 6 10 20 100 1000

Ẽ (∞)
min 0.7358 0.6866 0.6915 0.7226 0.7776 0.8499 0.9522 0.9926

For τ 	 1 the Ẽ (∞)-extension grows as Ẽ (∞)

d (τ ) ≈ τ (ed/2)−2/d .
For symmetrical radial packets one can also define the ‘radial extensions’ as

F (β)

d =
(∫ ∞

0
[χ(r)]β dr

)1/(1−β)

=
(∫ ∞

0
rβ(d−1)[ωdρ(r)]β dr

)1/(1−β)

(35)

where χ(r) is the radial probability density introduced in (9). In particular,

F (2)
d = ω−2

d

[∫ ∞

0
r2(d−1)|ψd(r)|4 dr

]−1

(36)

F (∞)
d = (max[χd(r)])−1 ≡ ω−1

d (max[rd−1ρ(r)])−1. (37)

In the case of β = 2 and probability density (8) we now obtain, instead of (29), the following
expression for the normalized radial extension (defined in the same way as in equation (30)):

F̃ (2)

d = C(1 + τ 2)5/2

Aτ 4 + Bτ 2 + C
(38)

where

A = 16d4 + 128d3 − 8d2 + 32d − 15

B = 2(16d4 − 32d3 + 56d2 + 8d − 15)

C = 16d4 + 64d3 + 56d2 − 16d − 15.

Since B/C < 2, the function F̃ (2)
d (τ ) increases with τ for any d if τ � 1. Moreover, making

plots (which are not given here, because they show nothing interesting) one can see that this
function never becomes less than 1 for any values of τ and d, as well as the function F̃ (∞)

d (τ ).

4.1. Packets with k arbitrary

The superextension E (∞) permits us to analyse the evolution of packets having initially the
form (4) with arbitrary values of parameter k. As we have seen for k = 2, the behaviour of
the function E (∞)(τ ) for not very small values of τ is determined by the time dependence
of the volume probability density |ψ(r, τ )|2 at the origin. The initial probability density has
maximum at r = √

k/2; therefore, the initial extension equals

E (∞)
d,k (0) =

√
π

2

[
ek�(k + d/2)

kk�(d/2)

]1/d

. (39)

Using Stirling’s formula, one can check that the initial extension slowly increases as a function
of k for k 	 d: E (∞)

d,k (0) ∼ k(d−1)/2d . Taking the value of |ψ(0, τ )|2 from equation (5), we
obtain the function

Gd,k(τ ) = (2eτ/k)−k/d (1 + τ 2)(k+d)/2d

[
�(d/2)

�([d + k]/2)

]2/d

(40)
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which gives an upper bound for the relative extension Ẽ (∞)
d,k (τ ). This bound is obviously bad for

τ → 0, but as soon as we are interested in the minimal value of the E (∞)-extension, replacing
the function Ẽ (∞)(τ ) by G(τ ) results in good (probably exact) evaluation. The minimum
of function (40) is achieved for τ = √

k/d (this formula explains the choice of moments
τ = 1,

√
2/3 and

√
10 in figures 1, 3 and 5):

Gmin(d, k) =
√

d + k

d

[
k(d + k)

4e2

]k/2d [
�(d/2)

�([d + k]/2)

]2/d

. (41)

If k = 2, then (41) coincides with (34). For d 	 1 we can replace the Gamma functions by
their Stirling representations and simplify (41) as

Gmin(d, k) ≈
(

k

d + k

)k/2d (
d + k

d

)1/d−1/2

. (42)

In particular, if d 	 k, then Gmin(d, k) ≈ (ed/k)−k/2d . If k 	 d , then formula (42) gives

Gmin(d, k) ≈ e−1/2(k/d)1/d−1/2. (43)

Consequently, it is possible to achieve arbitrarily large shrinking choosing the packets with
k 	 d > 2. In this sense, the case of two dimensions is the worst, because formula (41) for
d = 2 reads

Gmin(2, k) =
√

1 + k/2 [k/2(1 + k/2)]k/4 e−k/2[�(1 + k/2)]−1 (44)

so that for k → ∞ it goes to the constant limit
√

e/(2π) ≈ 0.66 (which is a little bit smaller
than the value of Ẽ (∞)

min (2, 2)). On the other hand, the asymptotical form of (41) for d = 3 and
k 	 1 reads

Gmin(3, k) =
√

e/3(4k)−1/6 (45)

which differs from (43) only in the numerical coefficient. It is worth noting that as soon as the
evolution of the probability density of the Gaussian packet (k = 0) is reduced to the uniform
scale transformation r → r/

√
1 + τ 2, all measures give the same result in this specific case:

the normalized extension increases as
√

1 + τ 2.

5. Conclusion

We have demonstrated that initial ‘ring-shaped’ radial packets can exhibit significant
‘shrinking’ at the initial stages of their free evolution. The degree of shrinking essentially
depends on the chosen measure of the packet extension and the kind of probability density
(‘volume’ or ‘radial’) used for the evaluation, because different regions of the ‘ring’ can move
initially in different directions, and some measures are more sensitive to the structure of the
‘internal’ regions, while the others are more sensitive to the probability distribution of the
‘external’ parts. The case of two space dimensions is not distinguished from the point of
view of measures different from the mean value of the radius. We have found the examples
of measures for which the distinguished dimensions are d = 3, 4 or 6. Moreover, choosing
suitable combinations of the parameters k and d characterizing the initial packets and the
parameters α and β of the measures of packet extension one can obtain the minimal value
of the normalized time-dependent extension as small as desired. However, asymptotically,
as τ → ∞, all packets ‘forget’ their initial forms and spread almost as usual symmetrical
Gaussian packets (although some faint remnants of the initial ring remain forever). The
problem of shrinking packets in one dimension was considered recently in [8].
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[7] Pérez Prieto A L, Brouard S and Muga J G 2003 J. Phys. A: Math. Gen. 36 2371
[8] Dodonov V V and Andreata M A 2003 Phys. Lett. A 310 101
[9] Cirone M A, Rza̧žewski K, Schleich W P, Straub F and Wheeler J A 2002 Phys. Rev. A 65 022101

[10] Bialynicki-Birula I, Cirone M A, Dahl J P, Seligman T H, Straub F and Schleich W P 2002 Fortschr. Phys.
50 599

Bialynicki-Birula I, Cirone M A, Dahl J P, O’Connell R F and Schleich W P 2002 J. Opt. B: Quantum Semiclass.
Opt. 4 S393
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